1. For your school field trip, you take a diesel-powered school bus to a local museum. You and your friends travel 12 km in order to reach your destination. Calculate (one way only):

 Known: Fuel consumption for a diesel school bus = 0.22 L/km, distance = 12 km, energy content of diesel fuel = 38.3 MJ/L, N\textsubscript{2}O emitted by diesel fuel = 2.2 \times 10^{-4} \text{ kg/L}

 a. The total amount of fuel consumed (in litres)
 \[
 \text{Total fuel} = \text{Fuel consumption} \times \text{distance travelled} = 0.22 \text{ L/km} \times 12 \text{ km} = 2.64 \text{ L}
 \]

 b. The total amount of energy used (in MJ)
 \[
 \text{Total energy} = \text{Litres of fuel} \times \text{energy content for fuel} = 2.64 \text{ L} \times 38.3 \text{ MJ/L} \\
 = 101.11 \text{ MJ}
 \]

 c. The total amount of N\textsubscript{2}O (nitrous oxide) emitted by the bus (in kg and g)
 \[
 \text{Total N\textsubscript{2}O} = \text{Litres of fuel} \times N\textsubscript{2}O \text{ emission value for diesel} = 2.64 \text{ L} \times 0.00022 \text{ kg/L} \\
 = 5.81 \times 10^{-4} \text{ kg} = 0.581 \text{ g}
 \]

2. You and your family take a cruise on a long-distance ferryboat from North Sydney, NS to Port aux Basques, NL, a 178 km round trip. Including you, there were 225 people on board. Calculate (round trip):

 Known: Fuel consumption for a long-distance ferry = 43.97 L/km, distance = 178 km, energy content of heavy fuel oil = 42.5 MJ/L, CO\textsubscript{2} emitted by heavy fuel oil = 3.12 kg/L

 a. The fuel consumed per person (in litres)
 \[
 \text{Fuel per person} = (\text{Fuel consumption} \times \text{distance travelled})/\text{number of people} = (43.97 \text{ L/km} \times 178 \text{ km})/225 = 7826.66 \text{ L}/225 \text{ people} = 34.78 \text{ L/person}
 \]

 b. The energy used per person (in MJ)
 \[
 \text{Energy per person} = \text{Litres of fuel per person} \times \text{energy content for fuel} = 34.78 \text{ L} \times 42.5 \text{ MJ/L} = 1478.15 \text{ MJ/person}
 \]

 c. The CO\textsubscript{2} (carbon dioxide) emitted per person (in kg)
 \[
 \text{CO\textsubscript{2} per person} = \text{Litres of fuel per person} \times \text{CO\textsubscript{2} emission value for heavy fuel oil} = 34.78 \text{ L} \times 3.12 \text{ kg/L} = 108.51 \text{ kg/person}
 \]
3. You, your dad and two friends take your family’s SUV to go to and from a hockey game, a one-way distance of 6.5 km. On the way, your dad stops at the gas station and puts in some gasoline.

Calculate (round trip):

Known: Fuel consumption for an SUV using gasoline = 0.12 L/km, distance =13 km, energy content of gasoline = 35 MJ/L, CO\(_2\) emitted by gasoline = 2.29 kg/L, CH\(_4\) emitted by gasoline = 1.4 \times 10^{-4} \text{ kg/L}

a. The fuel consumed **per person** (in litres)

\[
\text{Fuel per person} = \frac{\text{Fuel consumption} \times \text{distance travelled}}{\text{number of people}} = \frac{0.12 \text{ L/km} \times 13 \text{ km}}{4 \text{ people}} = 0.39 \text{ L/person}
\]

b. The energy used **per person** (in MJ)

\[
\text{Energy per person} = \text{Litres of fuel per person} \times \text{energy content for fuel} = 0.39 \text{ L} \times 35 \text{ MJ/L} = 13.65 \text{ MJ/person}
\]

c. The CO\(_2\) (carbon dioxide) emitted **per person** (in kg)

\[
\text{CO}_2 \text{ per person} = \text{Litres of fuel per person} \times \text{CO}_2 \text{ emission value for gasoline} = 0.39 \text{ L} \times 2.29 \text{ kg/L} = 0.89 \text{ kg/person}
\]

d. The CH\(_4\) (methane) emitted **per person** (in kg)

\[
\text{CH}_4 \text{ per person} = \text{Litres of fuel per person} \times \text{CO}_2 \text{ emission value for gasoline} = 0.39 \text{ L} \times 0.00014 \text{ kg/L} = 5.46 \times 10^{-5} \text{ kg/person}
\]

4. While in Montréal, you hop aboard the Métro to go and visit a friend. Your stop is 9 km from where you start. There are six cars on your train and you can see 35 people in your car (assume same number of people in each train car).

Calculate (one way only):

Known: Fuel consumption (litre equivalent) for a subway = 0.38 L\text{e}/km, distance = 9 km, energy content of gasoline = 35 MJ/L, CO\(_2\) emitted by electric vehicle = 0 kg/L, CH\(_4\) emitted by electric vehicle = 0 kg/L, N\(_2\)O emitted by electric vehicle = 0 kg/L, six cars with 35 people on each car (210 people total)

a. The energy used by the train **per person** (in MJ)

\[
\text{Fuel equivalent per person} = \frac{\text{Fuel equivalent} \times \text{distance travelled}}{\text{number of people}} = \frac{0.38 \text{ L\text{e}/km} \times 9 \text{ km}}{210} = 0.016 \text{ L\text{e}/person}, \text{energy per person} = \text{L\text{e} per person} \times \text{energy content for gasoline} = 0.016 \text{ L} \times 35 \text{ MJ/L} = 0.67 \text{ MJ/person}
\]

b. The amount of CO\(_2\) emitted **per person** (in kg)

\[
\text{The amount of CO}_2 \text{ emitted per person} = 0 \text{ kg/L}
\]

c. The amount of CH\(_4\) emitted **per person** (in kg)

\[
\text{The amount of CH}_4 \text{ emitted per person} = 0 \text{ kg/L}
\]

d. The amount of N\(_2\)O emitted **per person** (in kg)

\[
\text{The amount of N}_2\text{O emitted per person} = 0 \text{ kg/L}
\]